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Scale-space edge detection algorithms in human and machine vision

1) Lindeberg (1998): Machine vision algorithm
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• Detect edges by looking for peaks in scale-space

• Position of peak along “spatial position” dimension 

gives the spatial position of the edge

• Position of peak along “scale” dimension gives 

the blur of the edge

• Multiple channels with 

different scales, σ

2) McIlhagga (2011): Optimal linear edge 

detection filter

• Corrected errors in Canny’s (1986) derivation

• Modelled image noise as white noise, with flat power spectrum, n0
2

• Modelled surrounding edges as brown noise, with power spectrum, C2/ω2, 
where ω is spatial frequency

• Decompose filter into whitening filter, W(ω), followed by detection filter K(ω)

( ) ( ) ( )F W Kω ω ω=
2 2 2

0

( )
i

W

C n

ω
ω

ω
=

+
where

• For high-contrast Gaussian edges, optimal K(ω) is whitened Gaussian edge:
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• So optimal filter given by 
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• For low image noise (n0 ≈ 0), F(ω) is a Gaussian 1st derivative filter, and 
McIlhagga’s optimal edge detection algorithm is identical to Lindeberg’s

• Unlike in Lindeberg’s algorithm, McIlhagga’s filters adapt to changes 

in image noise or surrounding image clutter, so they remain optimal

3) McIlhagga & May (2012): Blur detection by 

humans

• Observers see a sharp edge 

next to a Gaussian-blurred 

edge, both with added noise

• Asked which is the blurred edge

• Simulations of the task with 

McIlhagga’s (2011) optimal 

algorithm explain human 

performance with remarkable 

accuracy on a trial-by-trial basis

4) Georgeson, May, Freeman & Hesse (2007): 

Blur matching by humans

• Observers see a Gaussian-blurred edge and a blurred edge with a 

non-Gaussian profile

• Both stimuli are noise-free, so McIlhagga’s optimal algorithm reduces to 

Lindeberg’s algorithm

• But Georgeson et al. found that performance was best explained by a 

scale-space algorithm similar to Lindeberg’s but with a nonlinear operation 

in each channel (the N3
+ model)
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• The N3
+ model correctly predicts blur matches by humans for a large 

collection of different edge profiles

• They adjust the Gaussian edge until it looks as blurred as the other edge

• Why does McIlhagga’s optimal model fail to predict the data in this study?  

His filters are the optimal linear filters: Maybe in low noise conditions, 

Georgeson et al.’s nonlinear filter is better than the best linear filter

5) May & Georgeson (2007): Test of 2nd-

derivative based edge detection in human 

vision

• Many edge detection models in biological vision begin by filtering the 

image with a 2nd-derivative operator (Marr & Hildreth, 1980; Watt & 

Morgan, 1985; Georgeson, 1992; Kingdom & Moulden, 1992)

• These models predict that adding a linear ramp to an edge should not 

change its appearance 

• But adding a ramp with 

opposite polarity to the edge 

makes the edge look much 

sharper

• This rules out any model that 

starts off by applying a 2nd 

derivative operator to the 

image

• Georgeson et al.’s (2007) N3
+

model correctly predicts the 

effect of adding the ramp
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May & Hess (2008): Filter-rectify-filter algorithm for contour integration

• Filter-rectify-filter at a range of orientations

• If 1st- and 2nd-stage filters are parallel, the algorithm detects “snakes”

• If 1st- and 2nd-stage filters are orthogonal, the algorithm detects “ladders”

• Applying a threshold to the 2nd-stage filter output generates zero-

bounded response distributions (ZBRs) that extend across space and 

orientation, tracing out the contours

• 3D representation allows contours to overlap spatially without joining up

• Parameters of the model are the filter parameters and the threshold

• With one set of physiologically plausible parameters, the model can 

account for human performance on 176 experimental conditions in 

which the following contour parameters were varied: contour curvature, 

element orientation jitter, element orientation bandwidth properties 

(Hansen, May & Hess, under review)

• Scale of 1st-stage filter should match stimulus elements

• Scale of 2nd-stage filter should match spacing between the elements
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