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Contrast−response functions, Fisher information, and contrast decoding performance
Keith May1,2 and Li Zhaoping1 (1UCL Dept of Computer Science, 2 Dept of Ophthalmology and Visual Science, City University, London)

Tolhurst and colleagues
developed a Bayesian model for decoding

contrast from a population of spiking neurons with
Naka−Rushton contrast−response functions (Clatworthy et al,

2003; Chirimuuta et al, 2003).  The model chooses the most likely
contrast, given the neural response.  Chirimuuta and Tolhurst (2005) attempted

to fit this model to contrast discrimination data, but concluded that the Naka−
Rushton function "is a poor basis for modelling contrast coding by V1, unless a small

’hard threshold’ is incorporated" (p. 2957).  They claimed that, without a threshold on the
contrast−response function, their Bayesian decoding model was unable to account for

•  the depth of the dip in dipper functions for contrast discrimination
•  the steepness of the psychometric function for detection (Weibull β ≈ 3)

To fit a 14−data−point dipper function, Chirimuuta and Tolhurst (2005) used an arbitrary population of
neurons with 18 free parameters, including a threshold on the contrast−response function.

Chirimuuta and Tolhurst used complex distributions of semi−saturation contrast (c
50

).  We show that the
Bayesian decoder can fit many contrast discrimination dipper functions if we use a population of neurons
with a standard Naka−Rushton function (no threshold) and c

50
 uniformly distributed along the log contrast

axis.  With  r
max

 constant across the population of neurons (Model 1) we get Weber’s Law for high pedestal
contrasts.  A shallower slope can be obtained by scaling  r

max
 to keep a constant response (r

100
) to max

contrast (Model 2), or by using an exponential distribution of c
50

 values (Model 3), or both (Model 4).

We used Fisher information and probability theory to derive equations that predict the Bayesian
decoder’s performance levels.  As shown, the equations accurately predict the model’s

performance.  The equations allow fast fitting of the model parameters.

The equations explain the change in psychometric function slope (Weibull β) with
increasing pedestal.  For detection, it turns out that β = q, the Naka−Rushton

exponent; with increasing pedestal contrast, β asymptotes to about 1.3,
regardless of the model parameters.  Without a threshold, Chirimuuta

and Tolhurst always got  β ≈ 2 for detection because they fixed
q at 2.  Their hard threshold increased the Weibull  β

because a threshold has a similar effect to
increasing q.
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Key to lines and symbols

Model performance predicted from
our equations

Model performance determined from
Monte Carlo simulations

Semi−saturation contrasts of neurons

Psychophysical data

Model parameters
Mean response, r, of neuron is given by the Naka−Rushton function:

r = r
max

cq/(c
50
q  + cq) = r

max
10qu/(10qz + 10qu)

c is Michelson contrast

u = log
10

c

c
50

 is semi−saturation contrast

z = log
10

c
50

z
min

 and z
max

 are the min and max values of z in the neural population

z either has a uniform distribution with density ρ
100

 neurons per

log contrast unit (Models 1 and 2), or has an exponential

distribution with density ρ(z) = ρ
100

emz (Models 3 and 4)
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