Tilt aftereffect from untilted adaptators and motion aftereffect from static adaptors: Counterintuitive predictions of Li and Atick's efficient binocular coding theory

Keith May & Li Zhaoping (UCL Dept of Computer Science) www.keithmay.org

Background

- Li and Atick's theory of efficient binocular coding (Li & Atick, 1994, Network, 5, 157–174)
- Summation (S_{\perp}) and differencing (S_{\perp}) channels decorrelate the ocular signals
- Gain control maximizes information

- capacity
- Optimal gains vary from moment to moment, so channels should be selectively adaptable

Our binocular test stimulus

AJ AJ BB BB BF BF EP EP JH JH KMKM EL EL HGHG JF JF JS JS YL YL $H \vee H \vee H \vee H \vee H \vee H \vee H \vee$ $H \vee H \vee H \vee H \vee H \vee H \vee$

• 2-letter abbreviations are subjects' initials

seer

%

- Anticorrelated adaptation
- H and V indicate test stimulus components close to horizontal or vertical, respectively
- Correlated adaptation
- Surprisingly, male subjects showed much bigger adaptation effect than female subjects
- Many subjects were biased towards S₁ or S direction, so we added gratings of opposite contrast to each eye's test stimulus to bias the contrast of the S signal
- Results shown below (numbers under abscissa give Michelson contrast of added gratings; zero indicates data with unbiased stimuli selected from above figure)

Results: Experiment 2

- Tilt could be relative to horizontal (as shown) or vertical
- The summation channel sees tilt in one direction
- The differencing channel sees tilt in the other direction
- We should be able to control perceived tilt by selectively adapting S_1 or S_2 channel

Our binocular adaptation stimuli

Correlated adaptation

- both eyes see the same image
- S channel stimulated
- Sⁱ channel silent

Anticorrelated adaptation

- each eye sees the photonegative of the other eye's image
- S_ channel silent
- S channel stimulated

• Experiment 2 stimuli were horizontal or vertical

- H and V indicate adaptation/test orientation
- For subject JH, adaptation is highly orientation-selective
- For subjects EP and KM, adaptation is only moderately orientation-selective

Conclusions

- A tilt aftereffect can be generated by adaptors that are untilted (Experiment 2) or have equal energy at each orientation (Experiment 1)
- Adaptation at least partly mediated by cells with non-oriented receptive fields
- Summation channel partly implemented by cells with identical isotropic receptive fields in the two eyes
- Differencing channel partly implemented by cells with isotropic receptive fields that have opposite polarities in the two eyes – a few cells like this have been reported (Livingstone & Hubel, 1984, J Neurosci, 4, 309–356; Snodderly & Gur, 1995, J Neurophysiol, 74, 2100–2125)

Motion aftereffect from static adaptors

• Our tilt aftereffect from untilted adaptors is analogous to our previous work, in which we controlled the perceived direction of motion of the Shadlen–Carney stimulus using static adaptors (May, Zhaoping & Hibbard, 2012, Current *Biology*, 22, 28–32)

• The test stimulus images in our current work are the space-time plots of the test stimuli in our previous work

• The space-time plaids are stationary, flickering (counterphase) gratings used in the Shadlen–Carney stimulus (Shadlen & Carney, 1986, Science, 232, 95–97)

• Gratings tilted in space-time are smoothly drifting gratings

• We selectively adapted the binocular channels using static adaptors, and showed that this affected the perceived direction of motion of the Shadlen–Carney stimulus

This work was supported by a grant from The Gatsby Charitable Foundation to Li Zhaoping