Binocular integration in human vision adapts to maximize information coding efficiency

Keith May¹, Li Zhaoping¹ & Paul Hibbard²

¹UCL Dept of Computer Science ²School of Psychology, University of St Andrews

Gain control

Static binocular adaptation affects perceived direction of motion!

Adaptation of binocular channels

Experiments 1 and 3 Right Left

Experiment 2 (1D 1/f noise) Left Right

Background

- Li and Atick's theory of efficient stereo coding (Li & Atick, 1994, Network, 5, 157–174)
- Summation (S₁) and difference (S_) channels decorrelate the ocular signals
- Gain control maximizes information capacity for a given energy budget and signal-to-noise ratio

Cyclopean motion

- Correlated Adaptation • both eyes see the same image • S_. channel stimulated • S channel silent
- Uncorrelated Adaptation • each eye sees a completely different image • S and S channels stimulated
- Anticorrelated Adaptation each eye sees the photonegative of the other eye's image • S_{channel silent} • S channel stimulated

+

Procedure

- Experiments 1 and 2 had the same type of adaptation throughout a session
- Experiment 2 differed from Experiment 1 only in that it used 1D noise adaptors instead of natural images
- These 1D noise adaptors could be vertical or horizontal
- The cyclopean test stimulus was horizontal in all experiments
- In Experiment 3, the initial adaptation was always uncorrelated, but top-up adaptation switched between correlated and

- $Y = 2\pi fy$, where f = 0.25 c/deg, and y is vertical position
- $T = 2\pi gt$, where g = 6 Hz, and t is time
- Michelson contrasts: $\alpha = 0.1$; $\beta = 0.02$ in Expts 1 and 3, and 0.025 in Expt 2
- Shadlen and Carney invented this stimulus (Shadlen & Carney, 1986, Science, 232, 95–97)
- Shadlen and Carney always used $\beta = 0$. This gives equal signal strength in each channel, but motion is perceived in the summation (S_1) direction
- Perceived direction should depend on which channel (S₁ or S) responds most strongly
- By selectively adapting S_1 or S channel, we should be able to control perceived direction

Results and discussion

- C = Correlated adaptation (C+ and C- refer to positive and negative natural images, respectively)
- U = Uncorrelated adaptation
- A = Anticorrelated adaptation
- Dashed lines indicate significant bias from 50% • Long dashes: *p* < 0.05 (two–tailed) • Short dashes: *p* < 0.001 (two–tailed)
- Adaptation to *static* binocular stimuli affects

perceived direction of *motion* Adaptation of summation and difference channels

• Suggests adaptation occurs very early in cortex, before orientation selectivity has built up

not very orientation selective

• This fits with the idea that the adaptation achieves efficient coding: efficiency savings are maximized if efficient coding is implemented as early as possible

Experiment 3 100 KAM — C+ 0 8 512 0 8 512 0 8 512 0 8 512 No. of 120 Hz frames in top–up stimulus • Switching between correlated (C+) and anticorrelated (A) adaptation on alternate trials shows that adaptation to a single static binocular stimulus for one second can be sufficient to determine perceived direction of motion

• S₁ bias with short or zero adaptation duration suggests S channel adapts more quickly

• Explains Shadlen and Carney's finding of S_{\perp} bias when S_{\perp} and S_{\perp} signals balanced ($\beta = 0$): brief test stimulus activates both channels, but S adapts more, causing stronger response in S_{\perp} channel

Supported by The Gatsby Charitable Foundation and BBSRC grant BBE0025361