Motion adaptation from static binocular images: A surprising prediction of efficient coding theory

Keith May¹, Li Zhaoping² & Paul Hibbard³

¹City University London ²UCL ³University of St Andrews

Sright

Decorrelation

Gain control

www.keithmay.org

- Li and Atick's theory of efficient stereo coding (Li & Atick, 1994, *Network*, **5**, 157–174)
- Summation (S_{i}) and differencing (S_{i}) channels decorrelate the ocular signals
- Gain control maximizes information capacity for a given energy budget and signal-to-noise ratio (SNR)
- Optimal channel gains depend on interocular correlation and SNR, which both change over time during natural viewing

• So we'd expect sensitivities of S_{1} and S_{2} channels to continually adapt to the prevailing binocular image statistics

Cyclopean motion

Right Left

Right

*

Procedure

Correlated Adaptation

• S channel silent

Uncorrelated Adaptation

different image

Anticorrelated Adaptation

• S channel silent

• S channel stimulated

both eyes see the same image

• each eye sees a completely

• S and S channels stimulated

• each eye sees the photographic

• S channel stimulated

• Experiments 1 and 2 had the same type of adaptation throughout a session

• Experiment 2 differed from Experiment 1 only in that it used 1D noise adaptors instead of natural images

• These 1D noise adaptors could be vertical or horizontal

• The cyclopean test stimulus was horizontal in all experiments

- Modification of Shadlen–Carney stimulus (Shadlen & Carney, 1986, *Science*, **232**, 95–97)
- S and S channels see motion in opposite directions
- So perceived direction should depend on relative response strengths of S₁ and S channels • By selectively adapting S_{1} or S_{1} channel, we should be able to control perceived direction
- Details of test stimulus:
 - $Y = 2\pi fy$, where f = 0.25 c/deg, and y is vertical position • $T = 2\pi gt$, where g = 6 Hz, and t is time • Stimulus contrasts: $\alpha = 0.1$; $\beta = 0.02$ in Expts 1 and 3, and 0.025 in Expt 2
- Shadlen and Carney always used $\beta = 0$. This gives equal signal strength in each channel, but motion is perceived in the summation (S_{i}) direction
- We added gratings of opposite contrast, $\pm\beta$, in each eye to boost the *S* signal so that performance was at chance in the Uncorrelated Adaptation confition

Results and discussion

Experiment 1

- Four types of adaptation: C+ (correlated positive natural images), C- (correlated negative natural images), U (uncorrelated), A (anticorrelated)
- Dashed lines indicate significant bias from 50% (long dashes: p < 0.05; short dashes: p < 0.001)
- Result: Adaptation to *static* binocular stimuli affects perceived direction of cyclopean motion

Experiment 2

Acknowledgements and citation

• This presentation was supported by a travel grant from the Guarantors of Brain to Keith May • The work was supported by a grant from The Gatsby Charitable Foundation to Li Zhaoping • The work is published here: May,K.A., Zhaoping,L. & Hibbard,P.B. (2012). Perceived direction of motion determined by adaptation to static binocular images. *Current Biology*, **22**, 28–32

- For some subjects, adaptation of summation and differencing channels not very orientation selective, suggesting adaptation for these subjects depended mainly on non-orientation-selective neurons in visual cortex
 - Summation channel implemented by cells with identical isotropic receptive fields in the two eyes
 - Differencing channel implemented by cells with isotropic receptive fields in which the polarity in one eye was opposite to that in the other - a few cells like this have been reported (Livingstone & Hubel, 1984, *J Neurosci*, 4, 309 -356; Snodderly & Gur, 1995, J Neurophysiol, **74**, 2100–2125)

Experiment 3

 Switching between correlated (C+) and anticorrelated (A) adaptation on alternate trials shows that adaptation to a single static binocular stimulus for less than one second can be sufficient to determine perceived direction of cyclopean motion

